Forschung, Karl Landsteiner Privatuniversität, Uniklinikum

Forschungsprojekte

Forschung, Karl Landsteiner Privatuniversität, KRIS

Forschungsportal KRIS

KL Research Information System

Das Forschungsportal KRIS präsentiert den gesamten Forschungsoutput von Forscher:innen der Karl Landsteiner Privatuniversität. Das Portal ermöglicht eine komfortable Suche nach Forschungsleistungen, Personen und Organisationseinheiten. Sowohl Publikationen als auch Forschungsprojekte, Auszeichnungen oder Mitgliedschaften finden auf KRIS eine einheitliche und übersichtliche Darstellung. KRIS ermöglicht die Vernetzung von Expert:innen und gewährleistet die Sichtbarkeit öffentlicher Forschungsaktivitäten.

Die folgende Übersicht liefert einen kurzen Auszug der neuesten Projekte. Für nähere Informationen folgen Sie dem Link auf KRIS.

Übersicht der KL Forschungsprojekte

Forschung, Karl Landsteiner Privatuniversität, Wasserqualität und Gesundheit

Im Projekt „Wissenstransfer und Erfahrungsaustausch zu Trinkwasserqualität in Gebäuden“ werden konkrete Problemstellungen entlang der Wertschöpfungskette „Trinkwasser im Gebäude“ in einem sorgfältig zusammengestellten Unternehmenskonsortium mit WissenschaftspartnerInnen analysiert und diskutiert. Es handelt sich dabei um die vier Themenbereichen „Leitung“, „Wasseraufbereitung im Haus“, „Trinkwassererwärmung“ und „Armaturen“, wobei der Hauptaugenmerk auf der Qualitätserhaltung des Trinkwassers liegt. In moderierten Workshops werden TeilnehmerInnen aus der Wirtschaft den aktuellen Technologie-Status Quo erfahren, den wissenschaftlichen Partner sollen die Interessen und die Problemstellungen der Unternehmen nahegebracht werden. Durch Austausch ihrer langjährigen Erfahrungen werden neue Technologie- und Forschungsschwerpunkte sowie Dienstleistungen erkannt, die am Markt benötigt werden, und ein Kooperationsnetzwerk zwischen Wirtschaft und Forschungseinrichtungen langfristig aufgebaut. Wesentlich für den Erfolg dieses Qualifizierungsprojektes ist ein maßgeschneidertes, inhaltlich wie zeitlich kompaktes Curriculum, um den TeilnehmerInnen gerade in dieser Branche einen sparsamen Umgang mit ihren personellen, zeitlichen und finanziellen Ressourcen zu ermöglichen.

  • Fachbereich Wasserqualität und Gesundheit
  • Klinische Abteilung für Hals-Nasen-Ohrenkrankheiten (Universitätsklinikum St. Pölten)
  • Klinische Abteilung für Innere Medizin 2 (Universitätsklinikum St. Pölten)
  • Abgeschlossen
  • Fachbereich Pharmakologie
  • Klinische Abteilung für Innere Medizin 2 (Universitätsklinikum Krems)
  • Fachbereich Klinische Psychologie
  • Klinische Abteilung für Psychiatrie und psychotherapeutische Medizin (Universitätsklinikum Tulln)
  • Abgeschlossen

Der 3D Druck hält Einzug in die Medizin und kann auf verschiedene Arten unterstützen. Neben pass-genauen Implantaten und Orthesen kann der 3D Druck in der Operationsvorbereitung eingesetzt werden um ein besseres Verständnis über die geplante Operation zu erlangen. Zunehmend gewinnt dabei das Drucken von Organen an Bedeutung. In diesem Forschungsprojekt sollen mit Hilfe des Polyjet Verfahrens Materialen gedruckt werden welche realen biologischen Geweben von der Haptik aber auch hinsichtlich des biomechanischen Verhaltens möglichst nahe kommen. Die so entwickelte Drucktechnologie ermöglicht die Herstellung von patientenspezifischen Organmodellen basierend auf CT und MRT Daten, die zur präoperativen Planung vor komplizierten Eingriffen herangezogen werden können. Weiters können für die Weiterentwicklung von Operationstechniken und Implantanten mechanisch äquivalente Organe oder Prüfkörper hergestellt werden, die den Einsatz von Körperspenden für diese Belange verzichtbar machen. Die gedruckten Organe sind standardisierbar und weisen keine unerwünschte Variabilität auf, wie es bei Körperspenden der Fall ist.

  • Fachbereich Biomechanik

Das M3dRES-Projekt zielt darauf ab, eine einzigartige Infrastruktur für den 3D-Druck für die medizinische Forschung in einem stark interdisziplinären Umfeld zu schaffen.
M3dRES bietet wichtige Instrumente für die personalisierte Patientenbehandlung, für die Verbesserung der Bildgebung in der Medizin, für die Beschleunigung des Tissue Engineering und der regenerativen Medizin sowie für die Modernisierung der aktuellen medizinischen Ausbildung.

  • Fachbereich Biomechanik
Interreg

Sustainable biological recycling of environmentally hazardous substances (Rare Earth Elements) from electronic waste and waste water

  • Fachbereich Wasserqualität und Gesundheit

Bei der Entwicklung neuer Medizinprodukte und in der medizinischen Ausbildung sowie zur Vorbereitung komplexer Eingriffe sind Leichentests unumgänglich. Damit verbunden sind ethische Bedenken, rechtliche Einschränkungen und hohe organisatorische Aufwände, Testergebnisse sind nicht reproduzierbar und es sind nicht alle Pathologien verfügbar. Ähnliche Einschränkungen sind auch bei der Durchführung von Tierversuchen gegeben.
Künstliche anatomische Modelle könnten Leichentests weitgehend ersetzen, wenn sie im anatomischen Aufbau, in den mechanischen Eigenschaften und in weiteren anwendungs- spezifischen Funktionalitäten möglichst gleichwertig zu "echten" Humanpräparaten sind. Außerdem könnten solche Modelle direkt aus medizinischen Bilddaten (z.B. CT, MRT) abgeleitet und jede patientenindividuelle Pathologie als künstliches anatomisches Modell hergestellt werden. Um dies zu erreichen sind Kompetenzen zu Materialtechnologie, Anato- mie, Medizintechnik und Herstellverfahren – insbesondere additive Fertigungsverfahren (3D-Druck) - zu bündeln und die technologischen Grundlagen anhand der Entwicklung erster Muster zu erforschen.
Die erforderlichen Kompetenzen sind in den NÖ Technopolen Wiener Neustadt und Krems vorhanden und werden durch die medizinische Forschung in den NÖ Universitätskliniken ergänzt. Durch Zusammenschluss der damit befassten NÖ Forschungsinstitutionen ist diese herausfordernde aber lohnende Vision erreichbar.
Im Gegensatz zu aktuell am Markt verfügbaren anatomischen Modellen werden die in diesem Forschungsprojekt entwickelten anatomischen Modelle funktional, haptisch, mecha- nisch sowie in Textur und Aussehen deutlich näher an der Realität sein, in der Herstellung kostengünstiger und für bestimmte Anwendungen einen tatsächlichen Ersatz von "Körper- spenden" ermöglichen.
Im Zuge dieses Forschungsprojektes werden 6 hochwertige Forschungsarbeits- bzw. Aus- bildungsplätze für Dissertanten und Diplomanden in NÖ neu geschaffen. Die Zukunftsvision beinhaltet auch die spätere Gründung eines NÖ Unternehmens zur Entwicklung, Produktion und weltweiten Vermarktung realitätskonformer, künstlicher anatomischer Modelle. Damit wird der Entwicklungsprozess in der Medizintechnik vereinfacht, die medizinische Ausbil- dung verbessert und das Risiko komplexer Eingriffe deutlich reduziert.

  • Fachbereich Biomechanik
  • Klinisches Institut für Medizinische Radiologie, Diagnostik, Intervention (Universitätsklinikum St. Pölten)
  • Klinisches Institut für Hygiene und Mikrobiologie (Universitätsklinikum St. Pölten)
  • Abgeschlossen

Reproduktion von biologischen Geweben mittels 3D-Druck im Hinblick auf ihre mechanischen Eigenschaften

Der 3D-Druck, auch bekannt als additive Fertigung (AM) oder Rapid Prototyping, ist zu einem vielseitigen Werkzeug mit einem breiten Anwendungsbereich wie Fertigung, Kunst, Design und Medizin geworden. Im Bereich der biomedizinischen Technik hat sich AM nicht nur im Tissue-Engineering für Druckgerüste und in der Biomechanik für patientenspezifische Prothesen großer Beliebtheit erfreut, sondern es wurde auch als Instrument zur Herstellung realistischer 3D-Modelle vorgeschlagen. Beispielsweise bietet die individuelle Modellierung patientenspezifischer Prothesene über AM eine hervorragende Gelegenheit für Chirurgen, Vorgänge vorher zu üben. Studien haben gezeigt, dass dabei die Operationszeit reduziert und das Vertrauen des Arztes erhöht wird, was zu kürzeren Bestrahlungszeiten und niedrigeren Kosten führt. Obwohl bereits über 3D-Modellierungsansätze für die präoperative Planung berichtet wurde, ist noch ein genauerer Blick auf die mechanischen Eigenschaften der gedruckten Materialien erforderlich. Gegenwärtig fehlt diesen Modellen die genaue Darstellung der Gewebebiomechanik. Dies erfordert ein Verfahren zur Feinabstimmung der mechanischen Eigenschaften der 3D-Druckmaterialien, um den in-vivo-Bedingungen genau zu entsprechen. In diesem Projekt wird der 3D-Druck auf die Aufgabe angewendet, Materialien herzustellen, die biologische Gewebe und organähnliche Strukturen hinsichtlich ihrer mechanischen Eigenschaften imitieren. Die bedruckten Tücher können patientenspezifisch für die präoperative Planung sein sowie standardisiert für Anwendungen in der Forschung sein, die sich mit der Entwicklung neuartiger Operationstechniken, Implantationstechnologien und anderer medizinischer Geräte befassen. Einer der Anreize besteht darin, den Bedarf an Spenderorganen zu begrenzen und die Variabilität der in der Forschung verwendeten Organe zu reduzieren. Aufgrund der Tatsache, dass die Möglichkeiten des 3D-Drucks derzeit rapide zunehmen, kann diese Forschung auch als Grundlage für noch mehr Anwendungen in Bezug auf gedruckte Orgeln angesehen werden, die möglicherweise mit zukünftiger Technologie möglich sind. Die Hauptziele dieses Projekts sind:
die Etablierung eines Testprotokolls zur Erfassung charakteristischer biomechanischer Parameter verschiedener Gewebe, die Entwicklung von Softwarewerkzeugen zur Erreichung dieser Parameter in 3D-gedruckten Strukturen (basierend auf geeigneten Materialkombinationen und deren räumlicher Verteilung sowie Nachbearbeitungsverfahren), deren Druck Geweberepliken neben der Validierung ihrer mechanischen Eigenschaften durch Vergleich mit den tatsächlichen Gewebeeigenschaften. Alle Anweisungen zur Herstellung dieser Modelle müssen in einer sogenannten "Toolbox" enthalten sein.

  • Fachbereich Biomechanik

Komplexe Knochenbrüche müssen oft unfallchirurgisch versorgt werden. Die einzelnen Knochenfragmente werden dabei mittels Implantaten (Platten oder Stäbe) fixiert, um den Bruch zu stabilisieren. Die Verankerung der Implantate erfolgt unter anderem mit Knochenschrauben. Leider können sich diese Schrauben lösen oder ausbrechen, wenn der Patient den verletzten Knochen zu stark belastet oder seine Knochenqualität – und dadurch die Verankerung - unzureichend ist. Das Implantat muss dann in einer neuerlichen Operation ausgetauscht werden. Dies stellt für den Patienten aber auch für das Gesundheitssystem eine erhebliche und vor allem zusätzliche Belastung dar. In diesem Projekt soll ein computer-basierendes Schrauben-Versagenskriterium entwickelt werden, mit Hilfe dessen man vorhersagen kann, ob eine bestimmte Schraube in einem bestimmten Patienten den Belastungen standhalten wird oder nicht. Zur Entwicklung dieses Versagenskriteriums, werden eine große Anzahl an Knochenproben mit implantierten Knochenschrauben untersucht. Diese Knochen-Schrauben-Einheiten werden mittels CT gescannt und der Schraubenkopf wird in einer mechanischen Prüfmaschine in unterschiedlichste Richtungen belastet. Die Versagenslasten aller Proben werden dann in Beziehung zur jeweiligen Knochenmorphologie (Dichte, Architektur) in der Umgebung der Schraube gesetzt, die man aus den CT Bildern erhält. Als Resultat bekommt man einen mathematischen Zusammenhang, welcher für eine bestimmte Knochenstruktur und Lastrichtung die Versagenslast dieser Schraube angibt. Als Schraubenmaterial wird Standardtitan sowie ein neuartiges biodegradierbares Magnesium verwendet, das sich im menschlichen Körper auflösen kann. Damit wäre der normalerweise durchgeführte operative Eingriff nach erfolgter Knochenheilung zur Entfernung des Implantats obsolet. Um dieses vielversprechende Material einem klinischen Einsatz näherzubringen und um Know-How zu gewinnen, werden die Magnesiumschrauben kontrolliert degradiert und ihre Versagenslasten jenen von normalen Titanschrauben gegenübergestellt.

  • Fachbereich Biomechanik
  • Humanmedizin
  • Klinisches Institut für Hygiene und Mikrobiologie (Universitätsklinikum St. Pölten)
  • Abgeschlossen

Evaluierung der Genauigkeit verschiedener nicht-invasiver Methoden zur Bestimmung des Hüftgelenkszentrums für die klinische Ganganalyse bei übergewichtigen Kindern und Jugendlichen

  • Fachbereich Biomechanik

Digitale Rekonstruktion anthropologischer Funde - eine Pilotstudie zur 30.000 Jahre alten Doppelbestattung von Neugeborenen am Kremser Wachtberg

Als 2005 während archäologischer Ausgrabungen an der Fundstelle Krems Wachtberg eine mehr als 30000 Jahre alte Doppelbestattung zweier Neugeborener entdeckt wurde, erregte dies in der Öffentlichkeit sowie in internationalen Wissenschaftskreisen große Aufmerksamkeit. Weltweit betrachtet sind Funde von Jugendlichen und Kindern früher moderner Menschen äußerst selten. Die rituell angelegte Bestattung wurde nach ihrer Entdeckung und Freilegung als Block geborgen und sorgfältig gelagert, um den hervorragenden Erhaltungszustand des Befundes zu bewahren. 2015 wurde dieser Block dann im Labor schichtweise abgetragen, wobei jeder Arbeitsschritt nach neuestem Stand der Technik dokumentiert wurde.
Digitalisierung ist nunmehr Methode der Wahl für die Analyse, Rekonstruktion und bildliche Darstellung derartiger Funde. Die hochauflösende Mikro-Computertomographie ist derzeit die einzige Möglichkeit für die Erstellung einer digitale Kopie und Visualisierung der menschlichen Überreste. Damit wird sowohl die 3D Rekonstruktion der Oberfläche als auch der inneren Mikrostruktur ermöglicht, macht also „das Unsichtbare sichtbar“. Eine entsprechende Ausstattung wird 2018 die Abteilung für Biomechanik der KL als Teil der Core Facility am Campus Krems erhalten. Damit werden die derzeitigen Grenzen der Analytik überwunden und eine Digitalisierung der Funde für künftige Untersuchungen ermöglicht. Unter Einbeziehung der Laserscandaten der Ausgrabung kann der gesamte Befund rekonstruiert werden. Abgesehen von dieser dreidimensionalen Rekonstruktion wird es möglich sein, sowohl die „chaîne operatoire“ der Aktivitäten im Zuge des Bestattungsvorganges, als auch der postsedimentären Verlagerungsvorgänge (4D = räumliche Entwicklung in der Zeit) darzustellen. Neben der Rekonstruktion der Bestattung ist die zeitgemäße Dokumentation und Archivierung der Daten äußerst
wichtig für die zukünftige Forschung. Daher ist eines der Hauptziele dieses Pilotprojekts, einen Kriterienkatalog für ein langfristiges open-source Datenarchiv zu erstellen, das die Daten der Ausgrabung und der Grabungsfunde Wissenschaftlern aller Fachrichtungen nach neuesten wissenschaftlichen Kriterien zugänglich macht. Die Digitalisierung der Krems-Wachtberg Doppelbestattung ist in all ihren Gesichtspunkten herausfordernd und benötigt daher Experten aus verschiedenen Bereichen, um mit den unterschiedlichen Aspekten umzugehen, die einer solch spektakulären Entdeckung innewohnen. Nunmehr ist es möglich, diesen herausragenden Befund unter der Führung niederösterreichischer Forschungseinrichtungen zu untersuchen. Als eines der Hauptziele wird das Projekt zu einer weiteren Professionalisierung im Sammlungsmanagement und der Museologie – einem der Felder der
niederösterreichischen FTI Strategie – beitragen. Das Projekt wird die Wahrnehmung des kulturellen Erbes von Niederösterreich deutlich steigern und dazu die neuesten technischen Entwicklungen wissenschaftlicher Forschung auf internationalem Niveau nutzen.

  • Fachbereich Biomechanik
  • Klinische Abteilung für Orthopädie und Traumatologie (Universitätsklinikum Krems)
  • Abgeschlossen
  • Klinische Abteilung für Psychiatrie und psychotherapeutische Medizin (Universitätsklinikum Tulln)
  • D.O.T. - Die offene Tür
  • Abgeschlossen
Mosche ben Maimon (1135-1204)

Die psychologischen und psychodynamischen Untersuchungen der religiösen Erfahrung stellen eine Wissenschaft des menschlichen Verhaltens und der menschlichen Erfahrung dar, sodass die religiöse Erfahrung als spezifisch menschliches Erlebnis von den Methodologien der psychodynamischen Psychotherapieforschung adressiert werden kann. Die daraus forschungsgenerierten Maimonides Lectures stellen mit Symposien und Keynote Lectures eine mutuelle Befruchtung zwischen Abrahamitischen Religionen und Wissenschaften vor. Im Geist des Arztes, Philosophen und Gelehrten Mosche ben Maimon begegnen die Maimonides Lectures den jüdischen, christlichen und islamischen Traditionen. Damit wird ein substanzieller Beitrag zur Kultur der Inklusion der KL, welche der Aufwertung der Diversität verpflichtet ist, geleistet. Die Maimonides Lectures in Niederösterreich werden gemeinsam von der Österreichischen Akademie der Wissenschaften (ÖAW) mit den Abrahamitischen Religionsgemeinschaften in Österreich und der Karl Landsteiner Privatuniversität für Gesundheitswissenschaften (KL) unter der Schirmherrschaft des Amtes der Niederösterreichischen Landesregierung veranstaltet und etablieren somit kooperative, nachhaltige Forschung auf Exzellenzniveau.

  • Fachbereich Psychodynamik

Messung mechanischer Belastungen an der Oberfläche biologischer Gewebe

Knochen ist ein faszinierendes, lebendiges und intelligentes tragendes Gewebe. Es unterstützt den Körper, erleichtert die Fortbewegung und schützt die inneren Organe. Das Verständnis der mechanischen Eigenschaften des Knochens hilft bei der Entwicklung von Behandlungen und klinischen Anwendungen, die sich für komplexere und personalisierte Lösungen eignen.
Biologische Gewebe sind im Allgemeinen inhomogen und anisotrop. Um das mechanische Verhalten biologischer Gewebe zu verstehen, ist eine vollständige Beschreibung dieses Verhaltens über die gesamte Geometrie und Form der Probe erforderlich. Die mechanischen Eigenschaften von Knochen und Weichteilen wurden mit verschiedenen Ansätzen, wie In-vitro-Experimenten und numerischen Modellen, umfassend untersucht. Dehnungsmessstreifen (DMS) gelten aufgrund ihrer hohen Genauigkeit als Goldstandard für Dehnungsmessungen an der Knochenoberfläche. Messungen mit den SGs erlauben jedoch nur die Bewertung diskreter Punkte und liefern keine Verteilung der Vollfeldspannung auf der Oberfläche der Probe. Darüber hinaus erfordern SGs eine detaillierte Oberflächenvorbereitung. Eine schlechte Vorbereitung kann zu äußerst ungenauen Ergebnissen führen. Transducer und Extensometer wurden ebenfalls verwendet, um die globale Dehnung im Knochen zu messen. Alle drei früheren Dehnungsmessverfahren bewirken eine Störung der Ergebnisse aufgrund ihres Beitrags zur Tragfähigkeit und führen zu einer systematischen Unterschätzung der tatsächlichen Dehnungsverteilung.
In den letzten Jahren ermöglichten optische Messverfahren, die auf digitaler Bildkorrelation (DIC) und Rechenleistung basieren, die berührungslose Messung ganzer Oberflächen. Damit überwinden sie die Begrenzung der Kontaktierung der Oberfläche und die Verfügbarkeit einzelner Messpunkte.
Die DIC hängt von der Verfolgung der Verschiebung der erkannten Merkmale (Flecken) auf der Probenoberfläche ab. DIC verfolgt die Verschiebung zwischen verformten und unverformten digitalen Bildern der Oberfläche. Basierend auf den digitalen Bildern wird eine Vollfeld-Verschiebungskarte berechnet, aus der eine Vollfeld-Belastungskarte abgeleitet wird. Die Genauigkeit der DIC hängt von der Qualität der Flecken, den Messbedingungen (Größe und Verteilung von Licht und Flecken) sowie von verschiedener Software (Facetten- und Rastergröße) ab und Hardware-Parameter (Optik und Kameraauflösung), die optimiert werden müssen. Trotz der vielseitigen Vorteile des DIC-Ansatzes bei der Ermittlung von Vollfeld-Dehnungsmessungen an der interessierenden Oberfläche wurde die DIC für Messungen an biologischen Proben und insbesondere an Knochen noch nicht vollständig ausgenutzt.
Die Ziele dieser Studie sind: (i) eingehende Untersuchung der Genauigkeit und Präzision des DIC-Verfahrens auf der Grundlage standardisierter metallischer und polymerer Proben unter Nulllast durch Auswertung der Größe und Verteilung des Fleckenmusters, (ii) Validierung der Genauigkeit und Präzision von DIC DIC-Messsystem gegen einen präzisen Extensometer; (iii) die Verteilung der 3D-Vollfeldspannung auf der Oberfläche von biologischem Gewebe wie Knochen- und Sehnenproben bewerten; (iv) praktische Leitlinien zur Verfügung stellen, wie die Vorteile der DIC-Anwendung zur Messung von Belastungsfeldern an biologischem Hart- und Weichgewebe genutzt werden können.

  • Fachbereich Biomechanik
  • Molekulare Hämatologie / Onkologie
  • Klinische Abteilung für Innere Medizin 2 (Universitätsklinikum Krems)

Ein quantitatives Konzept zur Untersuchung human-assoziierter Antibiotikaresistenzen in Flüssen entlang des humanen Abwasserpfades

  • Fachbereich Wasserqualität und Gesundheit

Eine Behandlung nach vorderer Kreuzband(VKB)-rekonstruktion ist notwendig, um früh wieder mit Sport beginnen zu können, sowie Langzeitschäden vorzubeugen. Die empfohlene Anzahl postoperativer Physiotherapieeinheiten ist unklar, vor allem weil Studien gute klinische Ergebnisse trotz geringerer physiotherapeutischer Betreuung (Heimübungsprogramme) zeigten. Das Gangbild spielt eine wesentliche Rolle im Rehabilitationsprozess. Aus diesem Grund und weil eine 3D-Ganganalyse teuer ist, werden für den klinischen Einsatz leistbare und leicht anwendbare Geräte benötigt. Tragbare Systeme wie die IMUs (Inertial Measurement Unit) werden bereits für klinische Untersuchungen verwendet. Dennoch gibt es nur wenige angemessene Methoden und Scores für ganganalytische Untersuchungen nach VKB-Rekonstruktion. Die aktuelle Studie konzentriert sich auf ganganalytische Betrachtungen der frühen Rehabilitation nach vorderer Kreuzbandrekonstruktion. Für diesen Zweck wird ein spezifischer VKB-Rehabilitationsscore entwickelt, welcher mehrere Gangaspekte sowie klinische Parameter berücksichtigt. Die Qualität des auf IMU-Daten-basierenden Scores wird mittels einem 3D Ganganalysesystem evaluiert. Basierend auf diesem entwickelten Score wird das Ergebnis von unterschiedlichen Rehabilitationsprogrammen (Heimübungen versus standardisierte Therapie) geprüft. Zu diesem Zweck wird eine klinische Studie durchgeführt. Zwei Patientengruppen mit unterschiedlichem
postoperativem Behandlungsansatz nach VKB-Rekonstruktion werden gebildet. Die Ganganalysen sind in den postoperativen Wochen 6-7, 8-10 und 12-13 angesetzt, wobei hierfür einerseits ein einfaches IMU-basiertes System (G-Walk) und andererseits ein 3D-Ganganalysesystem für Validierungszwecke verwendet wird. Ein neuer VKB-Rehabilitationsscore wird entwickelt, welcher klinische Parameter (u.a. Bewegungsausmaß, IKDC, Lysholm), Standardparameter der Ganganalyse (Kinematik, Kinetik, räumlich-zeitliche Parameter), sowie auch komplexere Parameter wie Komplexität, Regelmäßigkeit oder lokale Stabilität berücksichtigt. Statistische Analysen werden durchgeführt, um den Einfluss der Rehabilitationsprogramme sowie die Eignung des IMU-basierten Scores gegenüber der 3D Ganganalysedaten zu überprüfen.

  • Fachbereich Biomechanik
  • Klinisches Institut für Physikalische Medizin und Rehabilitation (Universitätsklinikum Krems)
  • Klinische Abteilung für Kinder- und Jugendheilkunde (Universitätsklinikum Tulln)
  • Abgeschlossen
EFRE Logo
  • Molekulare Hämatologie / Onkologie
  • Klinische Abteilung für Innere Medizin 2 (Universitätsklinikum Krems)
Forschung, Karl Landsteiner Privatuniversität

Eine innovative Strategie zur Quantifizierung und Vorhersage toxigener und nicht toxigener Vibrio cholerae Bakterien in natürlichen Gewässern

  • Fachbereich Wasserqualität und Gesundheit
  • Klinische Abteilung für Kinder- und Jugendheilkunde (Universitätsklinikum St. Pölten)
  • Abgeschlossen
Experience sampling mit Wearables: Eine open-source Lösung
  • Fachbereich Psychologische Methodenlehre
  • Abgeschlossen
  • Humanmedizin
  • Abgeschlossen

Das Dissertationsprojekt klärt ontologische Fragen rund um das Leib-Seele, sodass ein solider begrifflicher bzw. wissenschaftsphilosophischer Rahmen, der ein breites Spektrum unterschiedlicher Forschungsergebnisse integriert, zur Verfügung steht. Im Vordergrund steht dabei, das in der kausalen Struktur der physikalischen Welt schwer erklärbare Phänomen der mentalen Prozesse wissenschaftlich zu fassen. Anschließend wird untersucht, wie mentale Prozesse die Bezugnahme auf andere Subjekte, auf intramentale Prozesse und auf nicht-mentale Gegebenheiten und Prozesse realisieren. Im Fokus stehen die Grundlagen von Wahrnehmungsprozessen und die Frage, was eine Erfahrung überhaupt zu einer Erfahrung macht zwar unter besonderer Berücksichtigung ihrer qualitativen und phänomenalen Aspekte. Eine Untersuchung der subjektiven Erfahrung, vor allem mit Blick auf die therapeutische Beziehung, wird damit auf ein gesichertes Fundament gestellt und eröffnet so die Möglichkeit neuer Erkenntnisse zur Grundlagenforschung der Medizin, den Gesundheitswissenschaften und den Humanwissenschaften.

  • Fachbereich Psychodynamik

Entwicklung eines zukunftsweisenden Wasseruntersuchungsverfahrens für die Trinkwasserversorgung von morgen

  • Fachbereich Wasserqualität und Gesundheit

Biologisch abbaubare Implantate auf Basis von Magnesium kommen zunehmend in den Fokus für den temporären Einsatz in medizinischen Anwendungen, etwa als Platten, Nägel, Stifte oder Schrauben zur Osteosynthese von gebrochenen Knochen. Der große Vorteil dabei ist der Wegfall einer zweiten Operation zum Explantieren etwaiger permanenter metallischer Fixierungen.

  • Fachbereich Biomechanik