Home / Departments & Hospitals / Anatomy and Biomechanics / Division Anatomy and Developmental Biology / Research
Division Anatomy and Developmental Biology


With respect to research, a triple-track approach is persued:

In an integrative morphogenetic approach we analyse anatomical structures against the background of genetic, epigenetic, and ontophyletic interactions as well as functional, biomechanical, and behavioural demands, in order to explore, why structures mostly look like they do, how they diverge among individuals, and eventually deviate towards malformation.

Clinical anatomical research aims at an interdisciplinary approach towards exploring topographical options and constraints for novel minimal invasive surgical/interventional procedures.

Didactic research comprises the designing and evaluation of novel teaching and assessment scenarios  in order to embedd anatomical teaching and training into todays life-long, competency based, interprofessional educational concepts.

Selected publications

Introduction of a new repair technique in bony avulsion of the FDP tendon: A biomechanical study.
Halát G, Negrin LL, Unger E, Koch T, Streicher J, Erhart J, Platzer P, Hajdu S.

Sci Rep, 2018. 8(1): p. 9906.
The purpose of this study was to determine the biomechanical characteristics of an innovative surgical technique based on a tension banding principle using a suture anchor in the repair of bony avulsions of the flexor digitorum profundus tendon. After injury simulation in 45 fresh frozen distal phalanges from human cadavers, repair was performed with minifragment screws, interosseous sutures and the innovative technique (15 per group). All repairs were loaded for a total of 500 cycles. Subsequently the specimens were loaded to failure. [Read more...]


Palisade Endings of Extraocular Muscles Develop Postnatally Following Different Time Courses.
Blumer R, Streicher J, Davis-López de Carrizosa MA, de la Cruz RR, Pastor AM.

Invest Ophthalmol Vis Sci. 2017 Oct 1;58(12):5105-5121.
Purpose: To analyze in a frontal-eyed mammal (cat) the postnatal development of palisade endings in extraocular muscles (EOMs) and to compare the spatiotemporal and quantitative patterns of palisade endings among individual rectus muscles. Methods: Cats of different ages ranging from birth to adult stage were studied. [Read more...]


Axons giving rise to the palisade endings of feline extraocular muscles display motor features

Zimmermann L, Morado-Díaz CJ, Davis-López de Carrizosa MA, de la Cruz RR, May PJ, Streicher J, Pastor AM, Blumer R.
J Neurosci, 2013. 33(7): p. 2784-93.
Palisade endings are nerve specializations found in the extraocular muscles (EOMs) of mammals, including primates. They have long been postulated to be proprioceptors. It was recently demonstrated that palisade endings are cholinergic and that in monkeys they originate from the EOM motor nuclei. Nevertheless, there is considerable difference of opinion concerning the nature of palisade ending function. Palisade endings in EOMs were examined in cats to test whether they display motor or sensory characteristics. We injected an anterograde tracer into the oculomotor or abducens nuclei and combined tracer visualization with immunohistochemistry and alpha-bungarotoxin staining. [Read more...]


4D-analysis of early pelvic girdle development in the mouse (Mus musculus)
Pomikal, C. and Streicher, J.
Journal of Morphology 2010;2 71(1):116-26.
The formation of limb girdles is a key-novelty in vertebrate evolution. Although the knowledge of pattern formation, genetic, and molecular analysis of limb development has prodigiously grown over the past four decades, the morphogenesis of the pelvic element, joining the appendicular with the axial skeleton has poorly been investigated. [Read more...]


Mathematical characterization of three-dimensional gene expression patterns.
Costa L. da F., Barbosa M. S., Manoel E. T. M., Streicher J., Müller G. B.

Bioinformatics 20 (11): 1653–1662, 2004
Motivation: The importance of a systematic methodology for the mathematical characterization of three-dimensional gene expression patterns in embryonic development.
Methods: By combining lacunarity and multiscale fractal dimension analyses with computer-based methods of three- dimensional reconstruction, it becomes possible to extract new information from in situ hybridization studies. Lacunarity and fractality are appropriate measures for the cloud-like gene activation signals in embryonic tissues. [Read more...]



Gene watching: how to get a closer look.

Streicher, J.
Trends Biotechnol, 2002. 20(10): p. 412-3.
The minisymposium ‘Gene expression monitoring and 3D-visualization’ was held at the ‘Experimental Biology 2002’ conference, April 20–24, 2002, in New Orleans, LU, USA. In the post-genome-era, one of the major challenges is to accurately and systematically analyse the spatio- temporal patterns of gene activity in the normal, experimental and pathological contexts. The comprehensive understanding of the dynamic activation of multiple genes and their functionalrole will require adequate tools for high resolution 3D representation and analysis of molecular processes. Neither of the conventional visualization techniques – whole-mount in situ hybridization and on-section in situ hybridization – can satisfy requirements in terms of optical resolution and visualization of complex 3D relationships [1]. [Read more..]



Computer-based three-dimensional visualization of developmental gene expression

Streicher J., Donat M.A., Strauss B., Spörle R., Schughart K., Müller G.B.
Nature Genetics 25:147-152, 2000
A broad understanding of the relationship between gene activation, pattern formation and morphogenesis will require adequate tools for three-dimensional and, perhaps four-dimensional, representation and analysis of molecular developmental processes. We present a novel, computer-based method for the 3D visualization of embryonic gene expression and morphological structures from serial sections. The information from these automatically aligned 3D reconstructions exceeds that from single-section and whole-mount visualizations of in situ hybridizations. [Read more...]




Homeotic duplication of the pelvic body segment in regenerating tadpole tails induced by retinoic acid

Gerd B. Müller, Johannes Streicher, Romana J. Müller
Dev Genes Evol, 1996. 206(5): p. 344-8.
Homeosis, the ectopic formation of a body part, is one of the key phenomena that prompted the identification of the essential selector genes controlling body organization. Shared elements of such homeotic genes exist in all studied animal classes, but homeotic transformations of the same order of magnitude as in in- sects, such as the duplication of the thorax in Drosophila mutants, have not been described in vertebrates. Here we investigate the capacity of retinoic acid to modify tail re- generation in amphibians. We show that retinoic acid causes the formation of an additional body segment in regenerating tails of Rana temporaria tadpoles. A second pelvic section, including vertebral elements, pelvic girdle elements and limb buds, forms at the mid-tail level. [Read more...]


Natural and experimental reduction of the avian fibula: Developmental thresholds and evolutionary constraint.
Streicher J., Müller G.B.

Journal of Morphology 214: 269-285, 1992
Fibula reduction is a key feature of avian limb evolution. In a combined comparative and experimental approach the present study analyses the trends of fibula reduction in extant birds and their developmental basis. [Read more...]



  1. 24 May

    4. European Calcium Channel Conference

    24. May 2022, 09:00 - 28. May 2022, 17:00
    Congress Centrum Alpbach, A-6236 Alpbach
  2. 25 May

    Inaugural lecture of Dagmar Stoiber-Sakaguchi Professor of Pharmacology

    25. May 2022, 18:00 - 20:00
    Karl Landsteiner University of Health Sciences, Auditorium
  3. 12 May

    Hearing "Work, Organizational, and Economic Psychology"

    12. May 2022, 08:30 - 12:00
    Karl Landsteiner Privatuniversität / Online via MS Team